Considerations For Advanced Green Facade Design
Presented By: greenscreen®

About Green Walls
To design a successful green facade, there must be a clear understanding of the concepts for creating "green walls". The terminology “green wall” describes a vegetated vertical surface and is an inclusive description of two very distinct concepts. Green facades are created by vines and climbing plants that are rooted in soil or containers, growing upwards or cascading down, and require a structure to maintain their position, develop growth, and survive through seasonal exposures. Green facades are easily scalable and rely on the adaptable characteristics of a broad range of plant species. The term “Living Wall” refers to a newly developed technology that relies on a prefabricated modular or monolithic vertical soil or hydroponic system to root plants on a vertical plane. This new concept of living walls can also be thought of as a vertical garden, requiring the care and maintenance of a garden with irrigation, drainage control and nutrients delivered and organized vertically. As any technology in its infancy, these systems have had great difficulty with consistent survivability of plant material over large surfaces for an extended period of time. Costs for producing a living wall are easily three to five times the cost of a green facade installation, and living walls have very significant ongoing maintenance and plant replacement operating costs.

This paper focuses entirely on designing and specifying green facades.
The greening and preservation of urban space has become an important consideration for cities, municipalities and communities, mostly based on the pressure from increased population density on existing infrastructure. As impervious surface area and building sizes increase to meet demand, water quality, storm water management and Urban Heat Island (UHI) effect have become primary challenges for designers and policy makers. Seattle and Chicago, as well as the County of San Mateo, California have implemented design recommendations for the integration of organic, living systems within the built environment, such as green roofs, green walls and vegetated swales, that can act as a bridge to alleviate the increased demands placed on existing infrastructure. This concept, also known as Living Architecture, promotes biomass to cool urban areas, support the growth of tree canopies to improve air quality and rain gardens to mitigate stormwater runoff. The Living Architecture concept is multidisciplinary and requires the cooperation, understanding and the applied skills of architects, landscape architects, engineers and horticulturalists. The integration of cross-disciplinary design is the basis for success in identifying and solving the unrealized opportunities between building and site development.

Urbanization has created opportunities and challenges in the built environment with the primary goal to increase the energy efficiency of buildings. Building energy consumption and the need for energy efficiency have largely been responsible for the creation of the USGBC LEED® green building program, and is currently a net zero initiative for all new and retrofit GSA construction by 2030. Buildings account for over 40 percent of all energy use in the U.S. and in 2006, Architecture 2030 issued the 2030 Challenge; it asks the global architecture and building community to adopt the target of a ‘carbon neutral’ state by 2030. The 2030 Challenge also recognizes that buildings are the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Slowing, and then reversing the growth rate of GHG emissions is the key to addressing climate change and keeping the average global temperature below 2°C (above pre-industrial levels). These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing (20% maximum) renewable energy. The implementation of green walls, green facade walls in particular, can help to accomplish the building energy efficiency targets proposed by The 2030 Challenge. Recent research conducted by David Tilley, PhD, at the University of Maryland has concluded that by incorporating a green facade wall on southern and western elevations, existing building envelope R values for typical residential construction can be substantially increased during the cooling period of summer months, correspondingly reducing energy demand for cooling. Additional conclusions of this three year study found in common building construction practices:

- Green facade walls cool the exterior of buildings by as much as 25 degrees F.
- Green facade walls reduce indoor air temperatures by reducing the heat flux into the building’s exterior walls and indoor space.
- Maintaining healthy, vigorous plants on a green facade wall can reduce exterior wall temperatures, thereby saving money on cooling costs.
- Green facade walls can improve the energy balance of buildings through reflectance and transpiration.
These conclusions are based on the shading benefits from the vegetation component of green facade walls and these benefits can help designers achieve desired energy reduction targets. The integration of shading benefits of green facade walls into a building program influences site development, and the added benefits from green walls to other elements of green infrastructure can be developed.

ABOUT URBAN HEAT ISLAND

As urban centers grow, ecosystem services become altered and even replaced. Roofs and pavement comprise over 60% of surface area in some cities. These changes cause urban regions to become warmer than their rural surroundings, forming an “island” of higher temperatures in the landscape known as the Urban Heat Island (UHI). Urban Heat Island effects lead to increased air conditioning costs, air pollution levels, heat and pollution-related illnesses and even death. Natural, pervious surfaces and vegetation can play an important role in the mitigation of UHI effects. According to the EPA, trees and vegetation lower surface and air temperatures by providing shade, and through evapotranspiration. Shaded surfaces, for example, may be 20–45°F (11–25°C) cooler than the peak temperatures of unshaded materials. Plants absorb water through their roots and emit it through their leaves. This movement of water is called “transpiration.”

Evapotranspiration, alone or in combination with shading, can help reduce peak summer temperatures by 2–9°F (1–5°C). The Sustainable Sites Initiative (SITES™) specifically advocates for the use of shade trellises and green facades to increase shading. SITES™ is an interdisciplinary partnership led by the American Society of Landscape Architects (ASLA), the Lady Bird Johnson Wildflower Center at The University of Texas at Austin and the United States Botanic Garden to transform land development and management practices through the nation’s first voluntary guidelines and rating system for sustainable landscapes, with or without buildings. For a peer reviewed credit list documenting contributions of green facades within SITES™, follow this link.

Additional green building certification programs such as LEED® 2009, recognize the inherent shading benefits of vegetation and also promote the use of native plant material to achieve credits within the scoring system. The utilization of regionally appropriate native plant material is a benefit that dovetails specifically with green facade walls and this flexible combination can play a large role in helping to increase coverage of the vegetated area to maximize point totals and make designed landscapes more layered, biologically diverse and sustainable. In addition to maximizing additional credits within the Sustainable Sites (SS) portion of LEED certification, the incorporation of green facades can contribute within Water Efficiency (WE), Materials and Resources (MR) and Innovation In Design (ID) credit areas. Click here for a comprehensive review of green facade credit contributions to LEED®.

Case Study: Studios 5C

Creating shade, while screening views and allowing for air circulation are challenges that architects face every day, but these environmental and aesthetic factors are magnified when designing in a desert climate. Studios 5C, located in Tempe, AZ is a 21,000 s.f. urban mixed use building in the Mill Avenue District of Tempe. It includes a ground floor brewpub with sidewalk patio, offices for an architectural firm, and a series of executive suites which cater to design professionals. Designed by RSP Architects, this building employs strong massing and honest expression of materials to harmonize and stand out in its urban context.

Innovative design is used throughout Studios 5C to help solve the environmental considerations that must be accounted for in an urban desert environment. On the exterior stair and balcony access, shade and screening are created by multi-story structural steel components that are infilled with trellis panels that facilitate the conversion of water from a liquid to a gas, also occurs from the soil around vegetation and from trees and vegetation as they intercept rainfall on leaves and other surfaces. Together, these processes are referred to as evapotranspiration, which lowers temperatures by using heat from the air to evaporate water. Evapotranspiration, alone or in combination with shading, can help reduce peak summer temperatures by 2–9°F (1–5°C). The Sustainable Sites Initiative (SITES™) specifically advocates for the use of shade trellises and green facades to increase shading. SITES™ is an interdisciplinary partnership led by the American Society of Landscape Architects (ASLA), the Lady Bird Johnson Wildflower Center at The University of Texas at Austin and the United States Botanic Garden to transform land development and management practices through the nation’s first voluntary guidelines and rating system for sustainable landscapes, with or without buildings. For a peer reviewed credit list documenting contributions of green facades within SITES™, follow this link.

Additional green building certification programs such as LEED® 2009, recognize the inherent shading benefits of vegetation and also promote the use of native plant material to achieve credits within the scoring system. The utilization of regionally appropriate native plant material is a benefit that dovetails specifically with green facade walls and this flexible combination can play a large role in helping to increase coverage of the vegetated area to maximize point totals and make designed landscapes more layered, biologically diverse and sustainable. In addition to maximizing additional credits within the Sustainable Sites (SS) portion of LEED certification, the incorporation of green facades can contribute within Water Efficiency (WE), Materials and Resources (MR) and Innovation In Design (ID) credit areas. Click here for a comprehensive review of green facade credit contributions to LEED®.
Seattle's Green Factor program has been designed to increase the ecological and aesthetic functions of landscape while providing a high degree of flexibility and incentives for new development. The selected strategies, including green walls, encourage layers of vegetation and increased stormwater infiltration in order to shift the ecological function of the urban landscape toward pre-development conditions. The San Mateo County Sustainable Green Streets and Parking Lot Design Guidebook implements landscape-based stormwater management facilities countywide and has the potential to minimize pollution, stream degradation and localized flooding. The maximum tier of “green streets”, Level 5, advocates for the use of green walls to allow for the building, site and street frontage to become one integrated space for stormwater management. A recent study in the United Kingdom has found additional benefits beyond stormwater management for green walls within green streets programming. “A new research study by Professor Thomas Pugh at Lancaster University and other scientists in the UK has found that adding trees, bushes, innovative systems like green walls, or even ivy or other creeping vines, can cut street-level nitrogen dioxide (NO2) and microscopic particulate matter (PM), two of the worst forms of pollution, by eight times more than previously thought. Many urban streets have high levels of these types of pollution, far exceeding healthy amounts for humans”.

There are additional biophilic, aesthetic, restorative and psychological benefits when integrating green facade walls into projects and research has turned into reality with green walls being incorporated into urban health care facilities and healing gardens. In addition, green facade walls are being introduced into wind modeling to evaluate the effects for site and building design. With this

DEVELOPING PROGRAMS

Green facade technology can create shade that cools building surfaces, and also provides privacy screening created by the evapotranspiration of the plants is very successful in keeping a comfortable temperature range. Infrared photography studies reveal how temperatures of building surfaces collect and radiate heat gain, while shaded areas and plant leaves are considerably cooler. Leaf surface temperatures are at or near the ambient air temperature during evapotranspiration and in some cases are actually 3-5 degrees Celsius cooler.

The use of green facade wall technology to provide cooling and shading benefit in a desert environment is rapidly becoming a very cost effective and practical consideration for arid regions. Since the completion of Studios 5C in 2001, the application of green facade walls to help control heat gain has been expanded to recent projects including Phoenix Light Rail stations and the Tempe Transit Center.

CREDITS

Client: Studios 5C
Architects: RSP Architects
Installation Contractor: Sigma Contractors

SITE SPECIFICS

Completed 2001
100 trellis panels with full perimeter #5104 trim
3707 s.f. trellis panels
$6.71 cost per s.f.
Mounting: Hardware to structural steel (by others)

Green facades create shaded pedestrian areas and reduce Urban Heat Island effects, Valley Metro Light Rail, Phoenix, AZ
adaptable technology, a strong case can be made for the incorporation of green facade walls as a standard building component that can easily be designed into various project types.

Section II Green Facade Systems: Design and Implementation

Green facade systems provide a support for plants that have unique structural characteristics and growing habits. Choosing a green facade system that matches up the living plant component with the spectrum of design considerations is the focus of this section.

TWO-DIMENSIONAL SYSTEMS

Let’s look at the two types of structural green facade systems. The first are two-dimensional solutions that consist of vertical cables, horizontal cables, rods, grids, or nets and are made from a variety of materials. Manufacturers have created entire systems of solutions for assembly and attachment to a building facade or vertical plane. 2D cable configurations require being held in tension and the loading of connectors at the attachment points is a critical factor. The design and placement of the connectors is related to the span of the facade and may require specific engineering and structure to ensure performance under increasing loads. Cable systems and their attachment components are most often made from stainless steel that can add to durability and strength, but also increases costs. 2D systems are generally installed in a simple plane, and require additional structure to create shapes, turn a corner or modulate a surface. The attachments for cables are shallow in depth, and unless there are additional support connection methods, the green facade will be close to a building surface. If structure is available, a vertical two dimensional cable facade can be attached at top and bottom but can not be used for a cantilevered configuration. Rigid 2D system components, from materials like steel or wood, are dimensionally larger than flexible 2D system components from materials like cables, rods, cable nets, or woven wire fabrics. A primary consideration for designing with a two dimensional facade system is how the plants inhabit and connect to the facade structure and how the system’s design might influence the plant growth and infill of the facade.

THREE-DIMENSIONAL SYSTEMS

The second group of structural solutions for green facades are three-dimensional systems that have unique design capabilities. 3D systems consist of panels that have length, width and depth, and are created specifically to enhance the growth and maintenance of green facade plants. 3D panels are made from thin gauge steel wire in different ways. One approach uses two wire grids held apart by intermittent wires and welded to a perimeter steel frame for strength in mounting. The wire grids are either woven or welded at various spacing. Another 3D system uses a structural panel with an integral truss that does not require a surrounding frame for mounting or strength. This modular panel has reduced material weight and creates some unique opportunities to cover large surfaces without perimeter frames, and for creating shapes. Structural panel systems are rigid, can span openings, and can be mounted vertically, horizontally, or between structural elements as freestanding facades. Attachment details for 3D panels connect at the perimeter frame, or when using the truss panel, can
alternately be located at the edge or within the panel field. Panel mounting details are available to create variable spacing off of a building surface, creating additional flexibility. 3D panels are rigid and the attachment design does not require resisting the same tension forces as 2D cable systems. Panel attachments primarily are engineered to resist weight loads and wind forces, and in some cases can be designed for limited cantilevers.

The distinct advantage of 3D systems for facade design is the panel depth that provides additional structure for plant material support and long-term maintenance. Vine-type plants require a host to attach to for vertical growth and support, and use a variety of evolutionary characteristics to attach to the host support. The most obvious plant attachment for a vine is an aerial root system that is so strong it can hold the plant to a building without any additional support. An example would be an Ivy or Wisteria, both of which are tenacious and can do significant damage to a building facade. Some vines are main-stem twine, and other vines use tendrils that can twine or curl around another plant or a component of a facade trellis. This group of plants is suitable for 2D systems and generally travels along the cable or rod system, opportunistically attaching. In this case, the plant must develop significantly to infill space between supports and increase its leaf canopy. Another mechanical plant attachment is leaf hooking, and this involves the leaf pattern and plant strength hooking partially around a host structure until its growth advances to surround the support elements. Many green facade plants can be vine-like in their vertical growth characteristics, but are actually plants that are woody in nature and are runners and scramblers. This group relies on the structural host to support the plant lying upon or growing through the host, and they tend to be plants with long and leggy extensions, such as Bougainvillea. Within these various descriptions, some plants prefer to grow directly to the top of the support and then take significant time to spread, and others prefer to be spread early and then continue to grow vertically. Ultimately, the green facade structure design should take into account the growing characteristics of these different plant growth habits. Aerial root plants in close proximity to a building surface will migrate to the building and abandon the facade structure, runners and scramblers may require additional maintenance to establish on a 2D system.
After understanding the components of each type of system, a designer needs to make conscious choices regarding the opportunities and constraints to incorporate the appropriate green facade system into a project. The selection process can be linear in fashion and by completing a checklist of design considerations, successful project implementation can occur. It is important to note that this may not be a comprehensive list, but at a minimum, these considerations should be taken into account. It is equally important to make sure that there is interdisciplinary discussion at the onset of design, as one design consideration from an architectural perspective may affect the landscape architect, landscape contractor, horticulturalist, landscape maintenance contractor and ultimately, the client.

Scale: Scale is a critical factor when proposing and designing green facades. Specific green facade systems have the adaptability to be included on projects as small vignettes, to installations that include entire building elevations. There are basic applications for each type of system and it is important to understand what the possibilities are for each. Three dimensional panels are modular and can either be wall mounted or freestanding while being utilized at both ends of the scale spectrum. Cable systems are tensioned and are limited in their potential for inclusion in freestanding applications. Wall mounted installations of green facades are considered a building application, but there are possibilities for extending various scales of thematic components throughout the entire site. Consider if a single system type provides for all design elements, or if a combination of systems is required to execute the proposed design.

Budget: The most successful means of maintaining a green facade system design within a project’s budget is to have it incorporated as part of the building envelope, since landscape specific applications may have a tendency to be value engineered out of projects. Make certain that budgets include all aspects of a green facade system. Typically, product manufacturers provide a material cost only. Budgets should be adjusted to account for shipping, fasteners, installation of the system components, plants and plant materials, planting bed/soil preparation and irrigation installation costs. Ultimately, the budget discussion needs to be expanded to include maintenance expenses at the onset of the design process, so that designs can facilitate the long term requirements of both the physical system and plant material.

Concept Considerations: System selection should be consistent with the conceptual intent of the design. For example, if the conceptual intent is to provide for 100% vegetative coverage on a building elevation, cable systems utilizing a vertical and horizontal layout probably will need to be supplemented or enhanced to achieve the intent. It should also be noted that the growth habit of vining plant material is to grow vertically; extensive, horizontal spans without immediately adjacent plant material underneath will require significant maintenance to achieve the desired conceptual effect. In addition, maximum soil volume allowances need to be considered in the conceptual phase.
in order to successfully execute the design in the field and for long term survivability of the facade planting.

Architectural considerations: There are architectural considerations for facade attachment that need to be considered when determining the appropriateness of certain systems. Regional building construction variations can present challenges and a masonry split faced block will have different attachment requirements than a stucco facade with plywood backing. Attention should be given to attachment locations and whether the building envelope may need to include additional support material in order to facilitate mounting. Mounting locations cannot be located on glazing and the appropriate mounting structure should be determined during the design development process. Dead and live loads need to be verified by structural engineers to ensure that the system attachment method is compatible with the type of construction. Product manufacturers should always provide specifics regarding minimum pull out values of fastener types and recommendations for all building types.

Engineering requirements: Snow, ice, wind and weight loads should always be confirmed by a structural engineer for wall-mounted applications. Post imbed lengths also need to be recommended by a structural engineer for freestanding applications. Wind exposures and engineering requirements also change relative to height/elevation changes and there are regional building codes that need to be followed. Typically, codes do not allow for green facades to be used exclusively as handrails or crash barriers and local codes will need to be assessed for ventilation requirements for open and closed space on parking structures. Green facade systems have different component weights and the weight of heavier gauge systems need to be accounted for. Some 3D systems require a metal frame or trim for attachment and this additional weight also needs to be taken into consideration for engineering.

Site considerations: A pre and post site inventory should be conducted to determine the suitability of planting footprints, available soil volumes, sun orientation, drainage, water availability and microclimates. This will also help to determine appropriate plant material selection since plants do not respond equally to any of these variables. It is also recommended that a soil test be conducted after construction to determine the macro and micro nutrient levels of existing soils. Consideration should be given to installations that occur within areas that experience snow...
events. Snow removal and storage should be discussed with facility managers and landscape contractors in order to prevent any damage to the system and/or plant materials from these future activities.

Building code considerations: Local building codes regarding Right-of Ways (ROW), landscape ordinances and easements should also be consulted. Sometimes, green facades extending from a building wall can extend into easements or ROWs and consideration for the dimensions of the planting area must be taken into account. More and more local landscape ordinances are advocating for the incorporation of green facades to help alleviate potential zoning use issues and there may be certain height requirements that must be met in order to achieve compliance.

Environmental considerations: A thorough site inventory will help to identify most environmental considerations that need to be taken into account, but additional thought should be given to basic plant functions, tolerances and characteristics. In urban environments that experience snow events, salt injury can be detrimental to plant material and soils. When salt accumulates in the soil, excessive sodium (Na) from salt destroys soil structure, raises soil pH, reduces water infiltration and soil aeration leading to soil compaction and water runoff. Build-up of deicing salts in the plant can interfere with photosynthesis and other plant processes like respiration and transpiration. Salt tolerance of plant material is also a consideration in coastal environments. Plant functions should be determined since some plant material produces blooms that are attractors to pollinating insects, such as bees, while other plant material like grape vines produce fruit that may stain adjacent surfaces. Drought continues to be a major environmental factor in most parts of North America. According to the National Weather Service Climate Prediction Center, in August 2012 drought covered over 60% of the 48 contiguous states and ¼ of the US was experiencing extreme to exceptional drought. Drought creates an increased demand on water resources and in these conditions, native plants and drought-tolerate plantings are strongly recommended. Environmental considerations should also take into account the water use requirements of the entire site and the balance between usage, efficiency and conservation. Opportunities to include green facade systems within rainwater harvesting and greywater technology can occur on many projects and should be strongly considered in drought stricken areas. Conversely, green facades can also play a role within stormwater management plans for handling surface runoff and the reduction of off-site water discharge. Green facades have been successfully incorporated into vegetated swale and rain garden projects. Native vine varieties that thrive in seasonally inundated conditions should be considered for bioretention or additional low-impact development techniques.

Soil volume considerations: The amount of soil that is made available for plant’s roots to grow into is a consideration that is often not taken into account. Soil volume is critical for the long term success of plants in all locations regardless if in the ground or in planters. Historically, determining appropriate soil volumes for...
Plant material has been based upon research looking at shade tree survivability in urban environments. The most significant body of work in this area of research has been forwarded by James Urban, FASLA in his book *Up By Roots* (ISA Press 2008). Urban’s research states that a 16” caliper tree requires 1,000 c.f. of available soil volume or 2 c.f. of soil volume for every 1 s.f. of crown. Based on this research as a guideline, the following soil volume recommendations can be extrapolated for vines:

- 2” caliper = 100 c.f. 5’W x 10’L x 2’D
- 4” caliper = 200 c.f. 10’W x 10’L x 2’D
- 6” caliper = 400 c.f. 10’W x 10’L x 4’D

Visual observation of green facade installations over 15 years old has shown that vine plant material can reach caliper dimensions of six to eight inches and at-grade planting beds with an unlimited available soil volume provide the best option for maximum plant material height and spread.

A LIVING COMPONENT

Plant considerations: Appropriate plant selection is critical to the success of green facade systems. In addition to simply determining a plant’s hardiness, there are certain minimum requirements that must be determined to assess the appropriateness for each system. Twining and vining plants are conducive to cable and cable net green facades, while vines that cling, climb with tendrils or suckers may be utilized on three-dimensional systems. Some shrubs that have vertical growth habits, such as Climbing Hydrangea and Sunspot Euonymus, may also be successful on a three-dimensional system. Client/owners should be made aware that evergreen plant materials, such as English Ivy, can be problematic in northern climates without significant maintenance. English Ivy is typically used as a horizontal ground cover and to maintain this plant as a vertical element, vines need to be attached directly to green facade systems with regular pruning maintenance. Plants also can have a specific mature height and varying growth rates to achieve mature height. Priority should be given to regionally native plant material since it is typically drought tolerant and adaptable to local weather conditions. Regionally native plant material can also be more resistant to pests and diseases. As a rule of thumb, designers should strive for mixed planting designs that offer diversity, seasonality and eliminate the establishment of plant monocultures. The number of plants to incorporate into a system should also be given attention. Typically, cable systems require one plant per vertical cable, while multiple plants can be used on 3D systems. Plant spacing on 3D systems can vary greatly and is determined by the size of plant material upon installation and expected mature size. The following guidelines can be used to help determine plant quantities, but consultation with local landscape architects, native plant societies, landscape contractors and horticulturalists is strongly recommended:

- #1 Container 18”-24” o.c.
- #3 Container 24”-36” o.c.
- #5 Container 36”-48” o.c.
- #7 Container 48”

For a downloadable list of recommended plant material for 3D systems based on USDA Hardiness Zones, [click here](#). When making appropriate plant selection, please note that a small number of vines have been identified regionally as invasive and therefore should be avoided, especially if the installation is adjacent to undeveloped, open space.
Irrigation considerations: Everything that grows needs water and irrigation for green facade systems typically falls into one of two categories. At grade planting beds with typical vine plant material is the most common application. These planting plans can be watered within the scope of a standard irrigation plan. Within a green facade system planting, there is no need to water any part of the plant other than the root zone. Raised planters or container planters are the other type of application and water source should be a conscious determination, especially if included in a rooftop application. These installations most likely will have a defined soil volume and while that is a very critical consideration, frequency of watering and drainage within the soil volume is also paramount to the survivability of the plant material. Additional investigation should be given to the type of soil medium or mix that is being incorporated into the planter. An irrigation professional should be consulted in any installation in order to determine delivery system, watering frequency, rate and irrigation source.

Maintenance considerations: Unfortunately, maintenance for a majority of green facade installations is either too infrequent or more appropriately, non-existent. Green facade systems are one-half static system and one-half living system. Designers of green facade systems can play a critical role in educating the client/owners regarding appropriate design of a system to make it easier for typical horticultural maintenance practices that will ensure the long term success of the total system. Special attention should be given in the design phase to installations that are over eight feet in height, since anything taller will require the use of a ladder to properly maintain plant material. Additional attention needs to be given to installations that will require maintenance on multiple story projects. A comprehensive design program will specifically address how maintenance professionals will access or gain access to plant materials, irrigation components and soils requiring nutrient delivery. Access for maintenance is critical and consideration needs to be given to where ladders, scissor lifts and even bucket trucks can be located in order for the proper horticultural maintenance of green facades. Conscious design decisions also need to address the clearance between the wall and the back side of the green facade system. Systems that are held within six inches or closer to structure will need to have specific plant material that twines in order to prevent attachment of the plants to the building facade.

A clearance of 18 inches from the wall is recommended for wall-mounted installations over eight feet tall; this will allow sufficient space to prune plant material and provide access behind the system. Design decisions can and will affect the maintenance and long term success of the green facade system.

Lifecycle and sustainability considerations: How long do we expect these systems to last? 5, 10, 15, 30, 50 years? Experience has shown that well maintained systems, both physically and horticulturally, can last 18 years or more. Product manufacturers that have completed a Life Cycle Assessment (LCA) are using 30 years as a baseline for product lifecycle and plant material can last for centuries given ideal conditions. Project design and system selection should take into account an extended lifecycle time frame and consideration should be given to the possibilities of landscape renovations and alterations.
Specifications: As previously described, not all green wall systems are alike. Product specifications are written to guarantee that a client/owner is getting exactly what is designed for a certain application or need. Since there are many variations within green facade systems, strict adherence to specifications must be maintained so that acceptable substitutes are compared on an equal basis. Manufacturers that provide 3 part specifications should be identified and utilized.

Expectations and survivability: System selection, expectations and long term viability will be different depending on the diversity of the design team. The key to long-term success of a green facade system is to include as many disciplines within the design process as possible. As documented here, green facade systems can be far reaching in their scope and adaptability. One important design consideration is expected lifecycle of the green facade system. Some projects will be legacy projects maintained for decades, while others may be in place for a shorter period to keep in line with current design trends. If a project is expected to be replaced or renovated within a shorter time frame, systems that are conducive to Design for Deconstruction (DfD) principles should be utilized. For example, retail and hospitality projects typically have short design durations and some high visibility projects are typically renovated or reconstructed within a 12-15 year landscape plan. Many resources are available and multiple disciplines need to be included in order to achieve expectations. One of the best tools for managing expectations is to complete a Post Occupancy Evaluation (POE) after installation. Either formally or informally, POEs are a great way to engage clients, designers, facility managers and contractors to determine successes and areas of improvement on both existing and future green facade projects.

Case Study: Premier Auto Group

In early 2000, Ford Motor Company announced that it was constructing a 300,000 s.f. Class A facility and moving its Premier Auto Group (PAG) headquarters to Irvine, CA. The new facility, named One Premier Place, would include an 181,000 s.f. office tower, 90,000 s.f. product development wing, conference center, vehicle display area, fitness center and cafeteria. The facility would also be the first completed LEED NC project in the U.S. and included multiple green facade walls to provide shading benefit and help to screen adjacent vehicular traffic from interior office space. The project consists of 16,241 s.f. rigid, three-dimensional trellis panels in three specific applications.

300 feet of freestanding green facade provides security, shade and privacy screening, Irvine, CA

Project Update: In 2010, after selling off the Aston Martin, Land Rover and Jaguar brands, the Ford Motor Company leased the 181,000 s.f. office tower to Yum Brands, Inc. of Louisville, KY and the space is now home to the corporate headquarters of Taco Bell.

Credits
One Premier Place
Client: Ford Motor Land Services Corporation
Project Design Architect: LPA, Inc
Construction Manager: Koll Construction
Environmental Design Consultant: William McDonough & Partners

Site Specifics
Completed 2002,
467 trellis panels,
16,241 total s.f. green facade,
$6.65 cost per s.f.
Mounting: standard clips and hardware to structural steel supports (by others)
After a green facade system has been selected and all of the design programming has been completed, the design team should initiate the shop drawing process with the product manufacturer. Shop drawings are an important tool that will expose any deficiencies or oversights in the construction documents and design. Another important tool that can be utilized to insure a successful project is an installation checklist. Installation checklists can include a wide variety of considerations and help to create awareness between designers and contractors. Since green facades can be complex installations, here are just some of the items that might be included on such a list:

Scopes and contractors: The type of green facade system and installation will dictate the contractor’s scope of work. Large, multi-story, wall mounted installations typically will be awarded to contractors that have experience with building veneer, concrete precast and tilt-up systems. These contractors are capable of working at higher building elevations and are familiar with attachment considerations such as no-drill zones. Miscellaneous metals and structural steel contractors are typically best qualified to build large, free-standing green facade applications that require a steel support system. Plant material installation will be completed by another contractor, as well as the irrigation installation. Simple wall mounted and freestanding fence installations can easily fall under the scope of landscape contractors and this is an excellent way to combine the green facade construction, landscape contracting and irrigation scopes. For larger freestanding fence projects, fencing contractors can be very efficient and are very experienced with post layout and post imbed requirements. Recently, specialized green roof installers have been including green facade systems under their scope of services. These contractors are already familiar with working on rooftop installations and green facades can require specific considerations, such as roof deck penetrations and parapet wall attachments.

Contractor qualifications: At a minimum, contractors should be familiar with accurately estimating installation costs of the green facade system, the scope of work to be performed and being able to successfully complete the installation according to approved shop drawings. Additional qualification considerations can be assessed on a project by project basis.

Training and experience: Priority should be extended to contractors that have past experience with installing the specific green facade system. Some green facade product manufacturers might provide installation training and certification to contractors. Also, product manufacturers might have preferred installers in certain areas and should be able to provide a listing of contractors that have placed purchase orders in the past.

Kit of parts: Designers and contractors need to be familiar with the components of green facade systems and what is required for installation purposes. What does the product manufacturer provide and what additional requirements, such as fasteners, etc. are required to complete the installation? What are the lead times? How are the shop drawings delivered? In addition, contractors should familiarize themselves with how the system will be delivered to the job site. Initiating proper lines of
communication between designer, product manufacturer, general contractor and subcontractor can help to manage expectations and effectively coordinate scheduling for the installation.

Scheduling: Project complexity will be the main driver of job site scheduling and coordination. Installations that require multiple contractors and scopes will require linear project management in order for successful completion. A basic green facade installation sequence should be the construction of the static green facade system, followed by irrigation installation, if required, and then plant material. If multiple contractors are performing different scopes, it might be beneficial to complete any punch out inspections before moving on to the next step.

Punch out: Understanding what to look for during the punch out process is vital to the long term success of the green facade system. As far as the static system is concerned, there are two specific areas that require attention. The attachment system should be examined to determine if adherence to installation specifications were met. Especially on projects that are designed to meet exacting engineering requirements, proper clip placement, proper clip spacing and panel connections need to be inspected for compliance. On wall-mounted applications where fastening systems penetrate the building envelope, waterproofing integrity needs to be maintained and should be assessed. The other area that requires specific attention is the exterior coating of the static system. Powdercoated green facade systems can be compromised during installation and any exposed metal surfaces need to be re-sealed with an approved touch-up product. This is also critical if there have been any field modifications made to the green facade system. Any incidental metal filings that have collected on the system need to be removed in order to prevent surface rust staining. For the living system evaluation, there are two components that need to be inspected for design compliance. Irrigation systems need to be evaluated to determine if proper coverage is being achieved. Additional verification should include proper delivery rate, duration and frequency of delivery. Plant material should be examined to determine if specified sizes are installed, that they have not incurred damage, have proper spacing, are properly attached to the static system and proper mulch depths are maintained. The inclusion of a recommended planting detail within construction document submittals is an excellent way to prevent landscape contracting deficiencies in the field.

Warranties: Product manufacturers provide warranties that are specific to their static green facade systems and guarantees vary. Check with the product manufacturer to determine what coverage is provided. Plant material warranties should be provided by the landscape contractor and plant warranties are typically guaranteed to be free of disease or damage and plant survivability is the responsibility of the contractor for one year.

Maintenance specifications: Writing green facade maintenance specifications is an excellent way to manage long term expectations and provide a successful, lasting installation. Maintenance specifications can help to spell out explicitly the horticultural services that need to be provided by landscape maintenance professionals. Currently, there are no industry accepted performance specs for green facade systems and it would be the responsibility of the design team to write and enforce.

Section V Green Facades: A Standard Building Component

In addition to these important considerations, there are two further discussions that need to occur to insure a successful green facade installation. One needs to be centered around client/owner education regarding the maintenance aspects of both the static and living systems that are inherent with green facades. The client/owner should be made aware of these two distinctly different components and the maintenance strategies necessary to ensure success. Maintenance should be mandatory for all green facade installations to make sure that this capital expenditure appreciates in value and budgets need to be established in order to fulfill this requirement. For a comprehensive look into the issues that should be evaluated regarding maintenance, click here for the full document that outlines the considerations.
The final discussion needs to determine how and why green facade systems are deemed successful. This is very important to move the industry forward and to make certain that the technology is being utilized to its fullest capacity. Metrics should be defined that will identify what makes installations fail or fall short of expectations and goals. One tool that can be very helpful in determining the metrics are Post Occupancy Evaluations (POE). Performing POEs on projects can either be a formal or informal process and the insights can be very enlightening pertaining to the intricacies of the design process, responsibilities and post construction condition of the installation. In addition to POEs, project case studies are an excellent way to document the particulars of installations and a collective scope and body of work can be established quickly and easily. There is also a need to develop an industry standard maintenance and performance specification. Green facade designers, contractors and product manufacturers should be proactive in assembling and forwarding maintenance and performance specifications in order to establish an acceptable standard.

IN CONCLUSION

For building energy efficiency, durability, natural beauty, cost effectiveness and adaptability, green facades offer the design community a substantial asset. The green facade industry continues to evolve and there are a significant number of projects that have thrived for more than a decade, demonstrating a long range return on investment. Installation techniques and construction adaptability will continue to improve, and innovative design applications will be further advanced as designers continue to push the envelope for green facade inclusion. The case for that inclusion can be strengthened by taking the described considerations into account. The completion of this outlined process will help to establish a mainstream acceptance of green facades as a standard building component.

Continuing Education Questions:

For online credit registration: http://www.hanleywooduniversity.com/learncenter.asp?id=178409&page=749

1. Green facade technology consists of the following systems:
 - A. Two-dimensional
 - B. Three-dimensional
 - C. Living walls
 - D. All of the above.
 - E. A and B only

2. System selection primarily should take into account which of the following considerations:
 - A. Scale
 - B. Engineering
 - C. Plant material selection
 - D. Maintenance
 - E. All of the above

3. Soil volume considerations for the long term survivability of plant material are very important and current research suggests that a 4” caliper plant needs ____ c.f. of available soil volume to thrive.
 - A. 200
 - B. 100
 - C. 400
 - D. 50
 - E. None of the above

4. The following contractors are familiar with the applications and construction techniques required to install green facade systems.
 - A. Miscellaneous metals
 - B. Landscape
 - C. Fencing
 - D. Building facade
 - E. All of the above

5. Some green facade product manufacturers provide 3 part specifications to insure that a client/owner is getting exactly what is designed for a certain application or need.
 - A. True
 - B. False

6. Mutli-story installations of green facade systems should give particular consideration to the issues of:
 - A. Maintenance contractor access
 - B. Soil volume requirements
 - C. Engineering for wind loads
 - D. Irrigating plant foliage at higher stories
 - E. A, B and C only

This Continuing Education Course document is an abbreviated version of a white paper containing additional sections and discussions regarding designing and specifying for the long term survivability of your green facade. For the extended version in PDF format, **click here.**
7. Green facades typically include these types of installation applications:
 A. Wall mounted
 B. Freestanding
 C. Freestanding Fence
 D. All of the above
 E. A and B only

8. Green facade systems can contribute additional credits to LEED® 2009 and the Sustainable Sites Initiative™.
 A. True
 B. False

9. Mitigation of the Urban Heat Island effect can be achieved by the following inherent characteristics of green facades:
 A. Shading
 B. Evapotranspiration
 C. Stormwater capture
 D. All of the above
 E. A and B only

10. Green facades should include a multidisciplinary design approach and should include the following areas of expertise:
 A. Architects
 B. Landscape Architects
 C. Horticulturalists
 D. Irrigation Design Professionals
 E. All of the above
 F. A and B only

Resource Links

The Sustainable Sites Initiative (SITES™) Credit Contribution Review

LEED® 2009 Credit Contribution Review

Recommended Plant List by Hardiness Zone

Introduction to Green Walls: Technology, Benefits, and Design (2008)

Considerations For Advanced Green Facade Design White Paper

Bibliography

5. http://www.seattle.gov/dpd/Permits/GreenFactorOverview/

With 18 years of experience and over 5,000 installations, greenscreen® is the leader in green wall facade technology. By contacting greenscreen®, you will be working with a highly trained team with architecture, construction and landscape architecture experience that can help you with design, value engineering concerns or answer your specific project related questions. Please contact us directly at 800.837.3494 or visit:

www.greenscreen.com