Liko® Overhead Lifts at a Glance

An overhead lift is much more than a motor that lifts up and down. Although the mechanical activity of lifting is completed by the motor, the transfer and movement of the patient could not be accomplished without the rest of the system. An overhead lift includes many components which together make it possible to lift and transfer patients. An overhead lift system is an easy-to-use system that is readily available for caregivers to handle patients safely.

Installing an overhead lift system requires careful consideration. Architects should work closely with the clinical team to understand the lifting situations and expected paths of transfer (an example, bed to chair, bed to bathroom or repositioning the patient up in bed). To facilitate installation, it is also essential to know the underlying technical conditions and prerequisites in the location where the system is to be installed. To create the optimal system, the following should be considered:

• What are the clinical team's goals and expectations?
• How will the room be furnished?
• Will the patient be lifted to/from one or multiple locations?
• What will need to be accessed by the patient being lifted (bed, chairs, bathrooms, doorways)?
• How much space will be needed for lifting and transferring within the room?
• Are there any interior room walls (bathroom), booms, or ceiling installed equipment?
• How will the installation be performed?

Overhead Lift Customer Needs

Safe patient handling (SPH) is a policy and practice that replaces manual lifting and moving tasks for healthcare professionals with machines and training, resulting in comfortable and safe mobility for the patient without risk of injury to the care-provider. Safe patient handling incorporates knowledge of human anatomy and physiology with technologies that ease the stress of repetitive motions and dangerous lifting tasks. (http://assembly.state.ny.us/member_files/025/20110527a/index.pdf, Last Accessed 09-06-2012)

We believe every instance of patient mobility is an opportunity to provide safe movement. Patient lifting, repositioning, transferring, and transporting can be safely executed utilizing Hill-Rom’s Safe Patient Handling Solutions.

We can partner with you to help design and plan your custom lifting environment. Our portfolio of solutions includes lifts (overhead, mobile and sit-to-stand) and over 300 soft accessory products. There are products to meet the needs of most patients, lifting situations and care environments. From bariatric to pediatric, from critical care to rehab...Hill-Rom's Liko® portfolio has a solution to meet your needs.
Clinical Applications

The following are ceiling lift coverage recommendations by clinical unit/area. The coverage recommendations should be considered advisory and are not intended to be used as regulatory or accreditation requirements. The information in this table however, may be used to support overhead lift recommendations with consideration to patient needs by clinical unit/area. Insufficient coverage of patients or clinical unit/area presents a risk for staff or patient injury.

<table>
<thead>
<tr>
<th>CLINICAL UNIT/AREA</th>
<th>CEILING LIFT PATIENT/BED COVERAGE</th>
<th>PREFERRED TRACK CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical/Surgical Unit</td>
<td>50-100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Post-Surgical Unit</td>
<td>50-100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Rehab Unit</td>
<td>50-100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>• Consider installing straight track down hallway for ambulating patients</td>
<td>• If unit is primary neuro rehab, provide a minimum of 70% coverage</td>
<td></td>
</tr>
<tr>
<td>• Provide one supine sling and hanger bar system for unit</td>
<td>• For new construction or rooms large enough for ambulation within rooms, provide 100% coverage to assist in gait training, etc…</td>
<td></td>
</tr>
<tr>
<td>MICU</td>
<td>100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>SICU</td>
<td>100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>CCU</td>
<td>50%</td>
<td>Traverse or Straight</td>
</tr>
<tr>
<td>ICU (combined MICU/SICU/CCU)</td>
<td>100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Nursing Home/Long Term Care</td>
<td>70-100%</td>
<td>Traverse or (into Bathroom)</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>50-100%</td>
<td>Straight or Traverse</td>
</tr>
<tr>
<td>• Ceiling lift coverage is needed over areas where lateral transfers from stretchers or inpatient beds to dialysis beds occur</td>
<td>• (One straight track over several bays in a row would be appropriate)</td>
<td></td>
</tr>
<tr>
<td>Radiology (X-ray, CT, etc…)</td>
<td>50%</td>
<td>Straight or Traverse</td>
</tr>
<tr>
<td>• Overhead/ceiling lift system must be compatible with ceiling mounted radiological equipment</td>
<td>• Careful consideration is required to avoid conflicts between ceiling lift tracks and gantries in radiology rooms with traverse ceiling mounted equipment</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>100%</td>
<td>Straight</td>
</tr>
<tr>
<td>• Located in adjacent MRI patient transfer area</td>
<td>• Positioned as needed</td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td>50%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Procedure areas</td>
<td>100%</td>
<td>Traverse or Straight</td>
</tr>
<tr>
<td>• (GI, cystoscopy, etc…)</td>
<td>100%</td>
<td>(Positioned as needed)</td>
</tr>
<tr>
<td>Cath Lab</td>
<td>100%</td>
<td>Traverse or Straight</td>
</tr>
<tr>
<td>• If possible, extended over all beds in a row using one lift system per row</td>
<td>• Positioned as needed</td>
<td></td>
</tr>
<tr>
<td>PACU</td>
<td>100%</td>
<td>Straight</td>
</tr>
<tr>
<td>Operating Room</td>
<td>100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Physical Therapy Clinics</td>
<td>100%</td>
<td>Multiple but separate traverse systems covering specific areas, like on the parallel bars and at any treatment tables.</td>
</tr>
<tr>
<td>• Ceiling or wall-mounted equipment in ORs require careful consideration between lift tracks, traversing lift motors, and other equipment suspended from or mounted on ceilings and walls</td>
<td>• Preferred Design</td>
<td></td>
</tr>
<tr>
<td>Physical Therapy Clinics</td>
<td>100%</td>
<td>Straight Track installed over parallel bars, traverse track system covering treatment tables and activity areas. Alternate Design</td>
</tr>
<tr>
<td>Spinal Cord Injury</td>
<td>100%</td>
<td>Traverse into bathroom</td>
</tr>
<tr>
<td>Outpatient SCI clinic exam/treatment rooms</td>
<td>100%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Outpatient/Primary Care Clinics</td>
<td>Depending on patient population, one or more regular and/or one expanded capacity/bariatric lift</td>
<td>Traverse over multiple bays in a row or in private rooms.</td>
</tr>
<tr>
<td>Emergency Department/Urgent Care exam rooms</td>
<td>50-100%</td>
<td>Preferred Design</td>
</tr>
<tr>
<td>Ambulance Bay</td>
<td>Depending on patient population, one regular and/or one expanded capacity/bariatric lift under canopy in ambulance bay</td>
<td>Traverse track over several bays in a row or in private rooms. Alternate Design</td>
</tr>
<tr>
<td>Dental</td>
<td>Depending on patient population, one regular and/or one expanded capacity/bariatric lift</td>
<td>Traverse (Ensure proper coordination of ceiling lift track with entrance doorways)</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>20%</td>
<td>Traverse</td>
</tr>
<tr>
<td>Morgue</td>
<td>100%</td>
<td>Traverse or Straight</td>
</tr>
<tr>
<td>• Expanded capacity lift with minimum weight capacity of 600 lbs or greater depending on patient population characteristics.</td>
<td>• Lift system should be able to assist in inserting and extracting trays into cooler as well as lifting an moving bodies into and within autopsy suite.</td>
<td></td>
</tr>
<tr>
<td>Nurse Training Area</td>
<td>One</td>
<td>Straight</td>
</tr>
</tbody>
</table>

[http://www.fgiguidelines.org/pdfs/FGI_PHAMA_whitepaper_042810.pdf, Last Accessed 9-12-12]
Planning, Design and Installation Flow

During the Planning Phase

Determine the lifting needs of the facility
- Which type of rooms require lift system(s)?
- What type of lift system is required for each type of room?
- What percentage of rooms require lift systems?
- What percentage of those rooms require bariatric capability?

Once the lifting needs of the facility have been established contact your Hill-Rom sales representative to get some budgetary costs for the project and compare the numbers with the facility’s project budget.

*The lift system support method (see section on System Anatomy and Support Components starting on page 16) may impact the installation costs and coordination requirements with mechanical, electrical and plumbing (MEP). Consider the various methods for supporting the lift system(s) to best meet the project and needs of the facility:

*Also consider the various esthetic solutions to hide the lift system such as recessing the rails, recessing the wall supports and utilizing a cabinet to store the lift motor.

During the Design Phase

Preliminary Design – If completing a preliminary design, reference the typical system designs shown in this guide and found on the below listed support website links. If needed, Hill-Rom can provide a preliminary lift system layout in AutoCAD to overlay into the building plans. Hill-Rom also offers standard room configurations in Revit on Hill-Rom’s Design Portal at www.caddetails.com/hillrom.

- Hill-Rom recommends to incorporate the lift system layout prior to designing the ceiling grid, HVAC and other such equipment. The lift systems are typically aligned (possibly recessed) with the grid and will require coordination with lighting, diffusers, sprinklers and other such equipment.

Request For Quote (RFQ) – If requesting a quote from Hill-Rom, provide the building plans in AutoCAD format for each floor requiring lift systems. If available, provide floor plans, reflective ceiling plans, interior elevation details and building sections.

Helpful Link
http://www.liko.se/na/north-america/My-Workplace/ArchitectConstruction-Market/Personal-project-assistance/

SHOP DRAWINGS AND FINAL COORDINATION

During this stage there will be:
1. Revision phase (if necessary)
2. Shop drawings for coordination process
3. Final drawings and approval
4. Installation (after final approval)

INSTALLATION

Note: Installation must be performed by a Hill-Rom certified installer for Liko® products in accordance with Liko specifications and applicable building codes.
Standard installation that is provided by Hill-Rom includes:

- Installation team will participate in project-related, pre-installation meetings/call as needed.
- Installation of each system includes labor, attachment material/hardware to the building structure, lateral bracing, and final load testing.
- Final load testing will be completed to factory specification/equipment limits at attachment points on each installed system.
- A written load test report for each installed system certifying the lift system is ready for use.
- Installation of charging station(s) per plans or by location determined by the Owner/General Contractor.
- An installation schedule to be determined based on mutually agreed upon plans with Hill-Rom and the Owner/General Contractor prior to start.
- Install Charging Station(s) per plans or by location determined by the Owner/GC.
- Installation schedule to be determined based on mutually agreed upon schedule with Hill-Rom Liko and Owner/GC prior to start.

Standard installation provided by Hill-Rom does NOT include:

- Verification of the structural adequacy of the existing structure to support the lift. Owner/General Contractor is responsible for certifying the building structure for which the patient lift support system(s) will attach to, and certifying the building structure can support the weight of the lift system point loads. Note: Hill-Rom offers an optional, fee-based service to provide a structural assessment of the existing structure in areas where the Liko® lift system will be installed.
- Sealed engineering drawings and calculations. Any structural engineering, analysis, sealed drawings/calculations required is the responsibility of the Owner/General Contractor. Note: Hill-Rom offers an optional, fee-based service to provide sealed drawings for patient lift installations.
- Does NOT include removing or relocation of electrical devices, lights, vents, alarms, privacy curtains/rods/tracks, sprinkler system components, etc.
- Does NOT include any re-application of removed fire retardant material during patient lift installation.
- Does NOT include any patching and/or painting work.
Design and Layout Options

Hill-Rom’s overhead lift systems are available in two main installation options: (1) a single rail, or (2) a traverse system.

The Single Rail option may include combinations of straight or curved rails. This system is usually intended for lifting between two fixed points, for example a bed and a chair.

The rail can be straight or with curves. A curved rail, however, must always be supported by ceiling attachments. The straight rail is a simple, effective and economical solution to provide basic patient transfers.

The Traverse System option consists of a moveable traversing rail mounted on two fixed rails. This design allows for an increased coverage area to include chairs, couches, sink, etc. While the single rail system provides basic patient transfers, the traverse system can provide additional functions such as patient repositioning and in-room ambulation (walking) training.

The traverse system is the most common type of rail system and offers the most flexibility for patient care.

There are also free-standing systems which are good alternatives to ceiling-mounted overhead lifts. In some cases, a free-standing system is ideal if you want to try using an overhead lift but do not wish to install permanent fixtures in the walls and ceiling. In other cases, the need for lifting may only be temporary, or you may wish to avoid a permanent installation for other reasons. With a freestanding system, there are no special structural strength requirements for the walls or the ceiling.

Details on the free-standing system are not included in this guide. For more information, contact your local Hill-Rom representative.

Bariatric Considerations

The following information is included to reinforce adequate planning and designing of lift systems to (1) accommodate the local patient population and (2) drive awareness of the clinical needs for this specialty patient population. More considerations are required than just lifting capacity to meet the needs of bariatric/obese patients. This segment will include:

- Bariatric patient population growth and clinical care;
- Recommendations by the Facility Guidelines Institute;
- And, details of the UltraTwin® system’s “tilt in space” capability.

Although the care-needs of bariatric patients are much the same as average weight patients, the activity of care requires more planning and time to complete. A bariatric overhead system will allow the caregiver the capability to perform patient handling tasks safely and more efficiently than performing the tasks manually. Equipping the room appropriately to support a bariatric patient provides the capability for the patient to safely work towards goals of Activities for Daily Living (ADL) determined by the nursing care plan (such as: independently getting in and out of a chair or commode, the ability to get washed and dressed, or walk (ambulate, be mobile) with minimal assistance.

Safeguarding patient dignity is a concern for all patients. Providing an equivalent patient experience for bariatric patients in comparison to average weight patients can present a challenge. Conducting patient handling tasks such as maneuvering (repositioning/transfers) or showering/bathing requires additional staff and more personal exposure of the patient. Manually conducting those tasks may be experienced as uncomfortable or invasive. (citation: “The impact of staff behavior on patient dignity in acute hospitals,” Lesley Baillie, PhD, MSc, BA, RGN, VOL: 103, ISSUE: 34, PAGE NO: 30-31, Accessed: http://www.nursingtimes.net/nursing-practice-clinical-research/the-impact-of-staff-behaviour-on-patient-dignity-in-acute-hospitals/200209.article.) In addition, sub-optimal patient movement and transfers is also possible. By utilizing a bariatric, overhead system, patient handling tasks may be performed with fewer staff and may lessen the feeling of exposure to the patient.

Designing and planning health care facilities has a direct impact on the cost and quality of care, staff and patient safety, morale and accessibility. A 2009 study conducted by the Research Triangle Institute and the Centers for Disease Control and Prevention (CDC) lists the total health care cost associated with obesity in the US at $147 billion dollars a year, which includes Medicare, Medicaid, and private insurance payments.

Citation: Centers for Disease Control and Prevention Division of Media Relations, “Study Estimates Medical Cost of Obesity May Be as High as $147 Billion Annually,” 27 July 2009, http://www.cdc.gov/media/pressrel/2009/n090727.htm (last accessed Sept. 12, 2012)

The Facility Guidelines Institute’s Patient Handling and Movement Assessment (PHAMA): A White Paper is a good resource for the design team to incorporate patient handling equipment into the health care environment.

The PHAMA has two distinct yet interdependent phases. The first phase includes a patient handling needs assessment to identify appropriate patient handling and patient movement equipment for each service area in which patient handling and movement occurs. The second phase includes definition of space requirements and structural and other design considerations to accommodate incorporation of such patient handling and movement equipment.

Citation: http://www.fgiguidelines.org/pdfs/FGI_PHAMA_whitepaper_042810.pdf, pg. 7 of 28, (last accessed Sept. 12, 2012)

The 2010 FGI Guidelines include patient room recommendations such as:

- Private room, with minimum clear floor area of 200 square feet (renovation exclusion is 150 square feet);
- Minimum clear dimension of 5 feet on both sides and foot of the bed;
- Equipment and supply storage not less than 25 square feet per patient bed.

As well as recommendations for bariatric accommodations in staff/patient interaction areas including: patient assessment areas, rehab areas, food service areas, family interaction areas, diagnostic & treatment areas, surgical and Pre/Post-Operative care areas, toilet rooms and waiting and family lounges.
Lifting bariatric patients requires specifically designed equipment and special techniques. As detailed on page 5 of this document, the Hill-Rom lift system capacity ranges from 440 lbs to 1,100 lbs. With Hill-Rom’s experience and understanding of the issues surrounding heavy lifting, the UltraTwin™ system was developed.

Bariatric patients vary greatly in their size and shape depending on height, weight, and how that weight is carried. Physical conditions are unique to each patient particular to skin folds, abdomen size (pannus), and larger, heavy body parts. The maximum safe working load of a single-motor system offered by Hill-Rom is 550 lbs. While a number of other manufacturers offer a single motor system for patients in excess of 550 lbs, Hill-Rom has found that patients in excess of 550 lbs often times exceed the comfort level provided by a single-motor system. Patients of this size may be compressed by the sling attached to a single motor which does not accommodate the girth of the patient/patient’s abdomen. This could present comfort issues, but also difficulties in breathing.

In addition, a single attachment point for the sling (as found with many other manufacturers) does not offer the ability to tilt the patient in space which limits the user’s ability to make the patient comfortable. Hill-Rom’s UltraTwin™ system with two motors on separate points of attachment accommodates the extra girth common with patients exceeding 550 lbs, mitigating pressure on the patient’s chest and providing optimal positioning.

For this reason, Hill-Rom’s UltraTwin™ system is recommended for patients from 550 lbs to 1,100 lbs.

The UltraTwin™ system consists of twin lift motors, specialty slings that accommodate bariatric weights and an optional UltraTwist™ accessory providing the ability to rotate a patient 360 degrees. Please see the below image and link that shows this application in action.

Click to see the UltraTwist™ accessory in action
Ceiling Mounted Lift System Configurations

Basic Single Rail

Basic Single Rail Curving into Headwall

A basic single rail system allows a lifting area that is directly below the rail and is used to lift and move between two fixed points. The inclusion of a curve in the rail is possible and will allow for storage options for the motor, such as into a headwall or cabinet. Above are two examples of ceiling mounted, standard single rail lift system configurations.
Basic Traverse Rail

The traverse system option consists of a traversing rail mounted on two fixed rails. This design allows for an increased coverage area to include chairs, couches, sink, etc.

As with the fixed rail system, there are storage options for the motor, including into a headwall or cabinet.
Above are two drawing examples of ceiling mounted traverse rail systems with complete room coverage: patient room and bathroom. The example on the left is a full coverage configuration and requires the bathroom walls to be lowered 7” to 14”. This example works well with a new construction project and is an alternative to the use of switches or a turntable as shown in the other images.

The configuration on the right allows for full patient room coverage that then connects to a rail switch and a single rail with turntable option to allow coverage to commode, shower and sink. The turntable option can be electric or manual. This option also entails a bathroom door header integration option as shown in the center image.
Ceiling Mounted Lift System Configurations (cont.)

Recommended Custom Doorway Application

- Custom Height Door extends up to Liko rail
- Door header to extend above rail
- Esthetic trim to match door color
- Liko Rail extending thru door
- Custom Height Door extends up to Liko rail
The UltraTwin™ system was specifically designed for the bariatric population. As a two-motor system, it offers better clinical positioning of a patient during lifting. With two motors the user can adjust the head to chest section independently from the mid to lower section, mitigating compression of the patient.
Ceiling Mounted Lift System Configurations (cont.)

UltraTwin™ System (w/UltraTwist™ Option) Traverse Bathroom Coverage with Switch Connection

This is one example of an UltraTwin set-up charging option.

The UltraTwist™ accessory can be added to any UltraTwin™ system to enable the staff to rotate the patient 360 degrees.
Here are some examples of wall mounted bariatric configurations. Based on need, there are a variety of wall mounted options instead of ceiling mounted configurations.
System Anatomy

Example of an acute care traverse system assembly

Example of an acute care single rail J track system assembly

Liko support pendants mount onto the building structure (concrete, steelwork, etc.) using Unistrut or similar materials.
Lift System Support Components and their Application

Pendants
There are different attachments for ceiling mounted systems. Pendants are a solution in a room with high ceiling, suspended ceiling or where ceiling mounted sprinkler systems or lamps etc. might be an obstacle.
Ceiling Bracket/Threaded Rod

Ceiling brackets are developed for ceilings with no or minor obstacles. Threaded rods are mostly used for ceiling attachments to wooden beams.

Ceiling Bracket/Threaded Rod Application

Concrete applications
Concrete or wood applications
Wood or steel applications
Wall Bracket/Upright Support

Rail attachment components in a suspended system are wall brackets or upright supports. For both these solutions, bayonet rails are necessary as a connection between the attachments and the rail.

Installation with Slimline Upright Supports is a good option when the ceiling and the walls can’t bear the weight from the rail system. If you are the least uncertain of the material of the ceiling and the walls, Slimline is the safest installation alternative. Installation with Slimline affects the building minimally, and it can easily be restored to its previous state when the rail system is removed.
Rails

Liko has five different rail models H70, H100, H140, H160 and H180. The strength is related to the height H (mm) of the rail profile. A larger height (H) increases the strength of the rail. All rails are made out of anodized aluminum and they are available in two colors; white and natural aluminum. These rail models are used in different combination in all Liko Overhead systems.

H70 Rail
70mm (2.75”)

H100 Rail
100mm (4”)

140 Rail
140mm (5.5”)

H160 Rail
160mm (6.25”)

H180 Rail
180mm (7”)

Notes:
• Switches only work with H70 Rail
• 90 & 45 degree curves are only available as H70 Rail
• H180 cannot be pendant mounted

Rail Application

All rails are equipped with end stops and end bolts to retain the motor carriages within the rail

End Stop

Safety bolt and locking nut
Traverse Rail Carriers

Liko has various models of traverse rail carriers for different installation solutions. It is important to choose the correct width of traverse rail carrier, which is based upon the distance between the primary rails in the traverse system, which allows a secure, smooth and easy movement of the secondary rail. The result of a traverse installation with traverse rail carriers that aren't wide enough is a bumpy asynchronous motion when moving the secondary rail.

There are other optional Traverse Rail Carriers that allow for either a lowered or raised rail profile.
Traverse Rail Carriers (cont.)

Traverse Rail Carrier Applications
Switches

Traverse Switch

Liko’s Traverse Switch is a device for transferring a lift motor between a traverse system and a straight rail system. The Liko Traverse Switch can be operated with a hand control and a mains connected control box or operated from a Likorall™ lift motor equipped with a special hand control and a MultiStation.

Side Rail Switch, Manual

The Side Rail Switch splits one track into two and allows the rails to go into different directions.

Side Rail Switch, Electrical

Liko’s Turntable is a device for transferring a lift motor from one overhead lift system to another and is especially adapted for straight rail systems. The electrical Turntable can be operated using a Likorall lift motor equipped with a special hand control. The electrical Turntable can also be connected to an electrical outlet and be operated using a mains operated hand control. The mechanical Turntable is operated manually by pulling the cords.

Turntable, Electrical

Turntable, Mechanical

Switch Application

Lift Motor Carriages

The Liko lift motor is mounted to a carriage. There are various models of carriages available, depending on need.

Quick Release Carriage Applications

Carriage w/out Brake
Quick Release Adapter Carriage
Carriage w/90 degree Turning
Charging Options

There are three methods for charging the Overhead Lift System:

- Lift Motor can be charged by placing the hand control unit in the wall mounted charger;
- By On-Rail charging with the use of a MultiStation connected to a power source that allows the lift motor to be parked below the MultiStation location;
- By In-Rail charging which allows the lift motor to be continuously charged no matter where it resides along the rail system.

Note: Hill-Rom offers numerous charging configurations for the Liko overhead systems. Contact your local rep for more options with charging.
Slings and Lifting Accessories

Hill-Rom has the largest assortment of slings and lifting accessories in the industry. All sling models have unique features to fit different lifting requirements, from basic lifting needs to highly specialized ones, including narrower applications all the way to bariatric ones.

In sizes that range from small and medium slim to XXX Large, with fabrics from polyester to cotton, Hill-Rom has a sling that meets every need. We include detailed instruction with every sling and mark each individually with the model, size and version. We even include laundering instructions.

Below are a few images of the most popular slings and their applicability.

![Original Soft Highback](image1)
![Ultra Sling](image2)
![RepoSheet®](image3)
![Multi- Strap](image4)

When it comes to lifting accessories, Hill-Rom has a nice selection designed to support and enhance the safe patient handling procedure. From different models of the universal slingbar, to quick disconnect options, to the Repo Sheet, to padded cases, to the digital LikoScale™ that can be incorporated with all lifts, Hill-Rom offers a wide and varied assortment of lifting accessories.

Below are a few images of the most popular lifting accessories and their applicability.

![LikoScale](image5)
![Padded Case](image6)
![Quick Disconnect](image7)
Hill-Rom’s Online Toolbox

Hill-Rom offers an online toolbox for its Architectural Products, Liko® Overhead Ceiling Lifts and NaviCare® Nurse Call product lines.

Available for you are drag and drop product drawings in multiple file formats, CSI specification sheets, product brochures, links to our AIA accredited CEU courses, downloadable software tools, the ability to save and manage your Project Folders and the option to Request a Quote.

ACCESS THESE TOOLS BY VISITING HTTP://WWW.CADDETAILS.COM/HILLROM/

BIM AND REVIT MODELS

Basis® Headwall
Vertical Single-Sided

Latitude® Arm System

Contour® Headwall

PRODUCT LINKS, BROCHURES, SPECIFICATION SHEETS AND DRAWINGS

1. Basis® Headwall System Design and Planning Guide
2. Basis® Headwall System Revit Model: Horizontal Single-Sided
3. Basis® Headwall System Revit Model: Horizontal Double-Sided
5. Basis® Headwall System Revit Model: Vertical Double-Sided
6. Basis® Headwall System – Horizontal In-Wall 96 Inch Low